HIGH PERFORMANCE MOLD STEELS FOR INJECTION OF REINFORCED PLASTICS
Modern industrial parts production in mainly automotive and electronic industries is characterized by the trend to substitute metals by reinforced plastics. Being much lighter and therefore weight-saving, such plastic components help to reduce CO₂ emissions, which is a clear ecologic focus worldwide. Intricate geometries, thin wall-thicknesses and large areas of the parts are characteristics that call for a growing amount of glass or carbon fibers in the plastics to obtain sufficient stability.

Plastics reinforced by fibers tend to be much more abrasive than conventional plastics and thus may cause premature wear of an injection mold. In order to counteract excessive and early wear in molds, voestalpine BÖHLER Edelstahl is offering a wide variety of high-quality tooling steels that are setting new standards in the production of heavy-duty components made from reinforced plastics.
TRENDS AND REQUIREMENTS

» New types of high performance plastics (GF, CF, fibre length, filler material)
» Increasing wear resistance requirements on mold material
» Increasing corrosion resistance of mold material
» Complexity of parts increased (light weight construction)
» Increase productivity through shorter cycle times (thermal conductivity)
» Higher closing pressures and processing temperatures

PLASTIC MOLDING
EXAMPLE OF „POLYMERIC LEIGHT WEIGHT CONSTRUCTION“

Prototype: Plastic steering case

» Equal cost part made of 50% glass fiber reinforced PA (Ultramid® A3R) with metal inserts
» Special FEM - Design modification
» Service temperature: max. 125 °C
» 50% weight savings

Source: ThyssenKrupp techforum 1/2014
PLASTIC PROCESSING

SELECTED PARTS/COMPONENTS MADE OF LONG FIBER REINFORCED THERMOPLASTIC

Long glass-fiber reinforced car frontend
Source: M. Schemme, FH Rosenheim

Short glass-fiber reinforced brake/clutch pedal holder
Source: POLYCOM

Long-fiber reinforced door module
Source: M. Schemme, FH Rosenheim

Oilpan
Source: LANXESS

HIGH PERFORMANCE PLASTICS

AUTOMOTIVE

PA6 – GF65

PA66 – CF35

HOUSEHOULD

PA66 – CF35

PC+ABS – GF40

PA6 – GF40

BÖHLER PLASTIC MOULD STEELS
WEAR MECHANISM

Fiber motion causes abrasive wear by

Beside glass fibers also glass balls, metal oxides (titanium oxide, chromium oxide), calcium carbonates, silica components (sand, quartz), ceramics … are forcing abrasive wear.

Source: Department of Injection Moulding of Polymers, University of Leoben
INFLUENCING FACTORS

Fiber Length

Source: Department of Injection Moulding of Polymers, University of Leoben

Typical fiber diameter: 10 µm
- Length up to 200 µm
- 200 µm < L < 500 µm
- 500 µm < L < 1000 µm
- 1000 µm < L < 2000 µm
- Length > 2000 µm

Polymer melt with glass fibers
PRODUCT SELECTION – HIGH PERFORMANCE MOLD STEELS

Non corrosion resistant steels

<table>
<thead>
<tr>
<th>BÖHLER grade</th>
<th>Chemical composition in weight %</th>
<th>Standard</th>
<th>Carbide vol.-[%]</th>
<th>Wear resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C, Cr, Mo, V, W, Others</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **BOHLER W300**
 - W300 / BLOC
 - Hardened and tempered tool steels
 - >58 HRC
 - Universal PM, very good hard machinability

- **BOHLER W302**
 - W302 / BLOC
 - Hardened and tempered tool steels
 - ~56 HRC
 - Higher strength at similar toughness

- **BOHLER W400**
 - W400 / BLOC
 - Hardened and tempered tool steels
 - ~50 HRC
 - Higher toughness, better polishability

- **BOHLER K490**
 - K490 / MICROCLEAN
 - Non corrosion resistant steels
 - Highest wear resistance

- **BOHLER S440**
 - S440 / SODUR
 - Non corrosion resistant steels
 - Standard 1.2343 / 1.2344

Examples for processed plastics:
- PA6 - GF50
- PA66 - GF40
- PA66 - GF35
- PA66 - GF30
- PC+ABS-GF40
- POM - CF35
- PA6 - GF65
- PA6 - CF45

MICROCLEAN
Powder metallurgical steels

VMR
Special materials subjected to vacuum refining or melting during at least one stage of manufacture.

SODUR
Cold work tool steels in ESR quality

SOBLOC
Hot work tool steels in ESR quality with special heat treatment

Non corrosion resistant steels

- up to ~20% GF
- up to ~30% GF
- up to ~60% GF
- up to ~65% GF
- Examples for processed plastics

Standard

1.2343 / 1.2344
Corrosion resistant steels (minimum free chromium content in the matrix of 13 %)

<table>
<thead>
<tr>
<th>BÖHLER grade</th>
<th>Chemical composition in weight %</th>
<th>Standard</th>
<th>Carbide vol-%</th>
<th>Wear resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BÖHLER M301 EXTRA</td>
<td>0.27 Cr 14.50 Mo 1.00 Ni 0.85 V +N</td>
<td>-1.2316</td>
<td>< 1</td>
<td>★</td>
</tr>
<tr>
<td>BÖHLER M333 ISOPLAST</td>
<td>0.24 Cr 13.25 Mo - Ni - V +N</td>
<td>-1.2083 / -420</td>
<td>< 1</td>
<td>★★</td>
</tr>
<tr>
<td>BÖHLER M340 ISOPLAST</td>
<td>0.38 Cr 14.30 Mo - Ni 0.20 V +N</td>
<td>-1.2083 / -420</td>
<td>1.5</td>
<td>★★</td>
</tr>
<tr>
<td>BÖHLER M350 ISOPLAST</td>
<td>0.54 Cr 17.30 Mo 1.10 Ni 0.10 V +N</td>
<td>-</td>
<td>ca. 8%</td>
<td>★★★</td>
</tr>
<tr>
<td>BÖHLER M366 ISOPLAST</td>
<td>0.54 Cr 17.30 Mo 1.10 Ni 0.10 V +N</td>
<td>-</td>
<td>ca. 8%</td>
<td>★★★</td>
</tr>
<tr>
<td>BÖHLER M390 MICROCLEAN</td>
<td>1.90 Cr 20.00 Mo 1.00 Ni 4.00 V +N</td>
<td>W=0.60</td>
<td>ca. 20%</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>

Hardened and tempered tool steels

Highest wear resistance, good polishability

- > 58 HRC

High wear resistance, high toughness, good polishability

- ~ 56 HRC

Good thermal conductivity, improved polishability and toughness

- ~ 50 HRC

Prehardened tool steels

Good thermal conductivity, improved polishability and machinability

- ~ 40 HRC

Examples for processed plastics:
PVC, CPVC, PES, PSU, PVDF, ABS

Powder metallurgical steels

Plastic mould steels in ESR quality

Special property and/or achievement characteristics
HEAT TREATABLE, WEAR RESISTANT MOLD STEEL

The wear is determined either by mass loss or volumetrically by 3D measurement of the sample surfaces before the test and after injection of, for example, 25 kg or 50 kg of glass fiber reinforced plastic molding compound.

The wear apparatus for testing the abrasive / corrosive wear on the tribosystem polymer melt / steel is installed in the injection molding machine in the form of an injection molding tool. The wear samples, which have the same temperature as the melt, form a rectangular gap in which large local shear stresses and shear rates can be generated. The melt is injected through the wear gap and generates the material removal on the surfaces of the two wear samples (each 15 x 12 x 5 mm). The entire dosing volume of the plasticized molding compound is injected at a defined injection pressure, defined injection rate and a specified melt temperature.

The wear is determined by the material removal (mg/cm²) or the material removal height (µm) before and after injected a defined amount of plastic melt.

Small Plates Wear Tests

Mean depth of abrasion or weight loss of the testing plates indicates the wear resistance.
EFFECT OF CORROSION AND ABRASION – LABORATORY TEST RESULTS
K110 VS. M390 MICROCLEAN, RESULTS FROM PLATES WEAR TESTS

PA 66 + 30% GF/ 300°C

Energy of abrasion / area (kJ/cm²)

Medium wear loss (µm)

Energy of abrasion / area (kJ/cm²)

Facts

» Filling materials and additional fibers in various plastic materials have an abrasive effect

» Together with corrosive media (fission products,...) tribochemical wear system emerges

Beside wear and corrosion resistance further important factors to choose the right material are:

» Tool design (complex/simple, deep/shallow cavity, ...)

» Tool size

» Surface requirements on the mold

Additional aspects are for instance dimensional stability, edge stability, machinability, ability for coating...

Detailed recommendations have to be checked case by case.
WEAR RESISTANCE WITH PLATE-WEAR TEST

Mean depth of abrasion (µm)

Hardness (HRC)

0.1 1 10 100 1000

1.2312 1.2316

Glass fiber reinforced polymer melt: PA 66 + 50 % GF

WEAR RESISTANCE WITH PLATE-WEAR TEST - DETAIL

Mean depth of abrasion (µm)

Hardness (HRC)

0.5 1 1.5 2

BÖHLER - Grades

Primary carbides increasing

Glass fiber reinforced polymer melt: PA 66 + 50 % GF
ELECTRICAL COMPONENTS
BASE PLATES FOR RELAYS

Processed material: PBT Vestodur X7212 NF + 45% GF
Cause for tool damage: Wear

HOUSEHOLD COMPONENTS
GEARS

Processed material: PA66 + GF35
Cause for tool damage: Wear
QUALITY LEVELS TECHNOLOGIES

Conventional Production

THE „STANDARD“ MATERIAL FOR ORDINARY STRESS, NORMAL LEVEL WITH:

<table>
<thead>
<tr>
<th>Structural conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbide distribution</td>
</tr>
<tr>
<td>Homogeneity</td>
</tr>
<tr>
<td>Individual carbides</td>
</tr>
<tr>
<td>Degree of purity</td>
</tr>
<tr>
<td>Toughness</td>
</tr>
</tbody>
</table>

Microstructure
BÖHLER K110
Electro Slag Remelting Production

IMPROVED SERVICE LIFE DUE TO:
- Least possible inclusion content
- Lower micro and macro segregation
- Good homogeneity and a higher degree of purity
- Homogenic structure throughout the entire cross-section and bar length
- Producing larger bar dimensions at a constant carbide distribution
- Uniform dimensional stability
- Broad range of application owing to a high degree of toughness

Powder Metallurgical Production

MICROCLEAN

FOR THE HIGHEST DEMANDS:
- Segregation free high performance steel
- Finest carbide distribution
- Highest metallurgical purity
- Isotropic properties
- Maximum wear resistance with a simultaneously higher toughness
- High degree of hardness
- Very good dimensional stability
- High compressive strength

Microstructure BÖHLER K340 in ESR quality

Microstructure BÖHLER K390 MICROCLEAN