

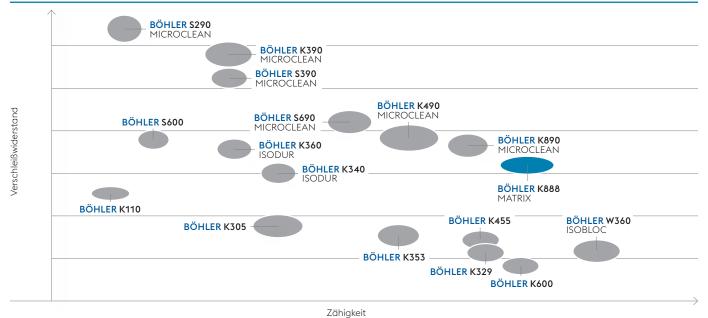
DER GEWINNER

BÖHLER K888 MATRIX

SIE MÖCHTEN IN IHRER FERTIGUNG NEUE MASSSTÄBE SETZEN UND AN PRODUKTIVITÄT GEWINNEN?

BÖHLER K888 MATRIX – Dieser MATRIX-Stahl zeichnet sich durch eine hervorragende Kombination von hoher Zähigkeit und hoher Druckfestigkeit aus. MATRIX-Werkstoffe haben eine hohe Zähigkeit, die für viele Anwendungen entscheidend ist. Die erreichbare Härte herkömmlicher MATRIX-Stähle schränkt die Einsatzmöglichkeiten jedoch oft ein. **BÖHLER K888 MATRIX** durchbricht diese Barriere und bietet das Beste aus der Welt der Matrixstähle und hochlegierten Werkzeugstähle.

Mit **BÖHLER K888 MATRIX** steht ihnen ein **GEWINNER** zur Verfügung, wenn höchste Druckfestigkeit und Zähigkeit gefordert sind. Aufgrund des vorteilhaften Anlassverhaltens mit ausgeprägtem Sekundärhärtemaximum ist auch der Einsatz modernster Beschichtungen möglich.

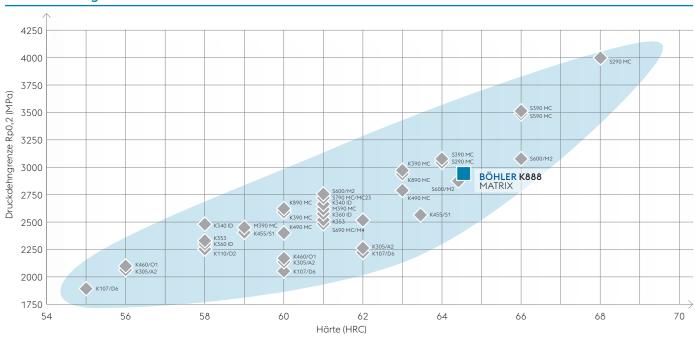

KURZUM:

- > HOHE HÄRTE
- > HOHE ZÄHIGKEIT

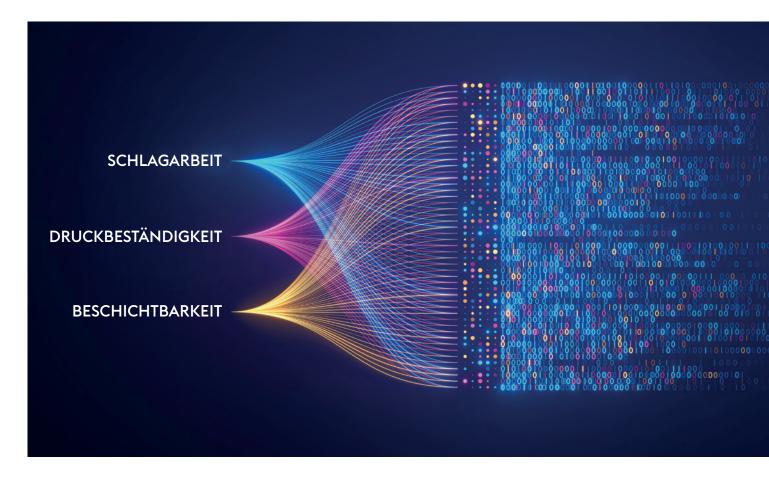
Positionierung der bekannten BÖHLER Marken

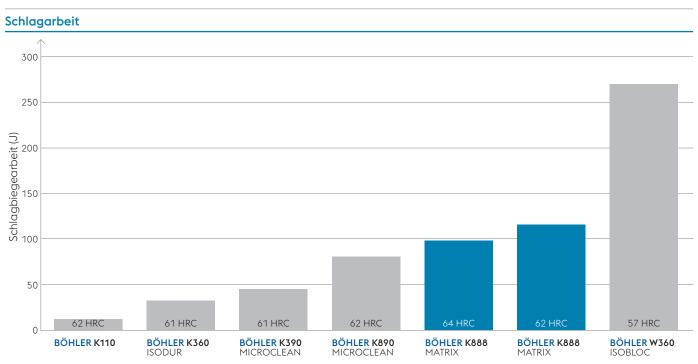
Zanigkeit

 $A CHTUNG: Das\ ist\ eine\ grobe\ Orientierung.\ Die\ Positionierung\ der\ Produkte\ h\"{a}ngt\ von\ der\ jeweils\ gew\"{a}hlten\ W\"{a}rmebehandlung\ und\ der\ gew\"{a}hlten\ H\"{a}rte\ ab.$


Chemis	sche Zusam	mensetzur	ng (Anhalts)	werte in Ge	w.%) / pate	entiert	
С	Si	Cr	Мо	٧	W	Со	
0.60	0.85	4.40	2.80	1 10	2.45	3.80	

BESTE EIGENSCHAFTEN


BÖHLER K888 MATRIX vereint die Vorteile von klassischen Matrixstählen und hochlegierten Werkzeugstählen. Die Kombination von hoher Druckfestigkeit und minimalen inneren Fehlergrößen (Primärkarbide) erhöhen die Dauerfestigkeit signifikant. Dies führt zu einer deutlichen Reduzierung von Ermüdungsschäden und einer Erhöhung der Werkzeug-Lebensdauer.


Ein hoher Anteil an Primärkarbiden erhöht die Verschleißbeständigkeit. Matrixstähle haben hier naturgemäß einen Nachteil, der jedoch durch den Einsatz von Beschichtungen ausgeglichen werden kann. **BÖHLER K888 MATRIX** bietet aufgrund seiner hohen Druckfestigkeit und der daraus resultierenden hohen Stützwirkung, die optimale Basis für innovative Beschichtungen.

Druckbeständigkeit

ID: ISODUR MC: MICROCLEAN

EIGENSCHAFTEN UND NUTZEN

- » Sehr gute Zähigkeit und Duktilität sorgen für hohen Widerstand gegen Bruch bzw. Ausbrüchen.
- » Härte: > 64 HRC
- » Hohe Druckfestigkeit
- » Gute Bearbeitbarkeit

Durch dieses Bündel an guten Eigenschaften ist es möglich, die **LEBENSDAUER** ihrer Werkzeuge zu erhöhen. **SIE GEWINNEN** an Produktivität und Wettbewerbsfähigkeit.

Physikalische Eigenschaften bei 20 °C				
Zustand: gehärtet und angelassen				
218 10 ³ N/mm ²				
7,86 kg/dm³				
0,50 Ohm.mm ² /m				
442 J/(kg.K)				
20,8 W/(m.K)				

^{*} Quelle: Materials Center Leoben Forschung GmbH, ÖGI

Wärmeausdehnung zwischen 20 °C und °C							
100 °C	200 °C	300 °C	400 °C	500 °C	600 °C	700 °C	
10,7	11,5	11,9	12,5	12,5	12,8	12,7	10 ⁻⁶ m/(m.K)

Für Anwendungen und Verarbeitungsschritte, die in der Produktbeschreibung nicht ausdrücklich erwähnt sind, ist in jedem Einzelfall **Rücksprache** zu halten.

ANWENDUNGEN

Die hervorragenden Eigenschaften lassen **BÖHLER K888 MATRIX** in vielen Anwendungsgebieten **ZUM GEWINNER** werden:

Stanztechnik

- » Schneidwerkzeuge (Matrizen, Stempel), Normal- und Feinschneiden
- » Schneidrollen

Kaltumformtechnik

- » Fließpresswerkzeuge (kalt und halbwarm)
- » Zieh- und Tiefziehwerkzeuge
- » Prägewerkzeuge
- » Presswerkzeuge für die keramische und pharmazeutische Industrie
- » Sinterpresswerkzeuge

Messer

- » Papier und Kartonagenindustrie
- » Kreismesser für Bandschlitzanlagen
- » Messer für die Recyclingindustrie
- » Schermesser

Kunststofftechnik

- » Formeinsätze
- » Spritzdüsen

WÄRMEBEHANDLUNGS-EMPFEHLUNGEN

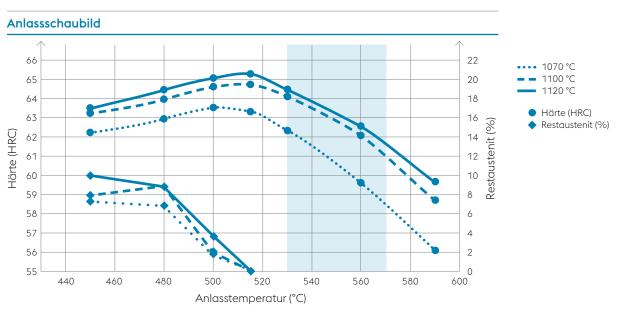
Die richtige Wärmebehandlung für optimale Ergebnisse.

Lieferzustand

» Weichgeglüht max. 280 HB

Spannungsarmglühen

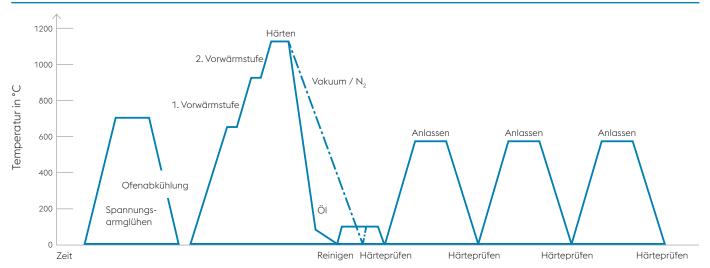
- » 650 bis 700 °C
- » Nach vollständigem Durchwärmen 1 bis 2 Stunden in neutraler Atmosphäre auf Temperatur halten.
- » Langsame Ofenabkühlung.


Härten

- » 1070 bis 1120 °C/Öl, N₂
- » Nach vollständiger Durchwärmung: 20 30 Minuten für Härtetemperatur 1070 1100 °C
- » 10 Minuten für Härtetemperatur 1120 °C
- » Nach dem Härten erforderliche Anlassbehandlung auf die gewünschte Arbeitshärte siehe Anlassschaubild.

Anlassen

- » Langsames Erwärmen auf Anlasstemperatur unmittelbar nach dem Härten
- » Verweildauer im Ofen 1 Stunde je 20 mm Werkstückdicke, jedoch mindestens 2 Stunden
- » Abkühlung auf Raumtemperatur nach jedem Anlassschritt wird empfohlen.
- » Es wird empfohlen mindestens dreimal bei 530 570 °C anzulassen.
- » Richtwerte für die erreichbare Härte nach dem Anlassen bitten wir dem Anlassschaubild zu entnehmen. Anlassen zum Entspannen 30 bis 50 °C unter der höchsten Anlasstemperatur.

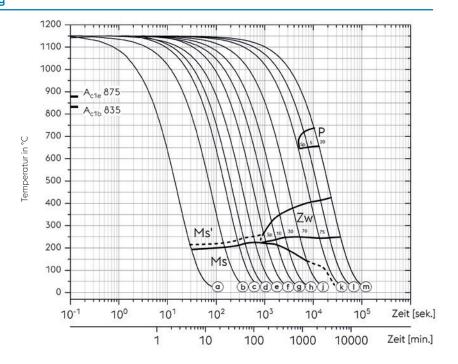

WÄRMEBEHANDLUNGS-EMPFEHLUNGEN

BÖHLER K888 MATRIX zeichnet sich auch durch seine

Flexibilität in der Wärmebehandlung aus:

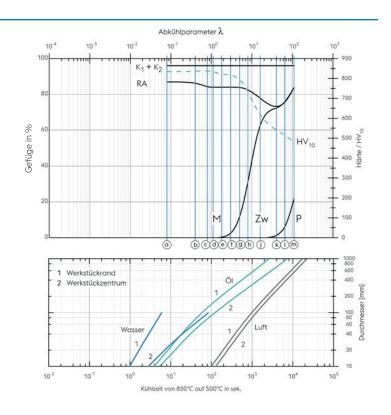
 » Wärmebehandlung gemeinsam mit gängigen Kalt- und Schnellarbeitsstählen bei Härtetemperaturen von 1070 – 1120 °C möglich.

Wärmebehandlungsschema



ZTU-Schaubild für kontinuierliche Abkühlung

Austenitisierungstemperatur: 1150 °C


Haltedauer: 180 Sekunden 5 ... 75 Gefügeanteil in % 0,08 ... 110 Abkühlungsparameter λ , d.h. Abkühlungsdauer von 800 – 500 °C in s x 10^{-2}

Probe	λ	HV ₁₀	
a	0,08	835	
b	0,40	835	
С	0,80	840	
d	1,10	835	
е	1,80	820	
f	3,00	820	
g	5,00	800	
h	8,00	740	
j	16,00	600	
k	40,00	540	
	65,00	515	
m	110,00	480	

Gefügemengenschaubild

- K1 während der Austenitisierung nicht gelöster Karbidanteil
- K2 Beginn der Karbidausscheidung während der Abkühlung von der Austenitisierungstemperatur
- RA Restaustenit
- A Austenit
- M Martensit
- P Perlit
- Zw Zwischenstufe

ZERSPANUNGSPARAMETER BÖHLER K888 MATRIX @ 63HRC

Die vorliegenden Daten wurden anhand des Demonstrators bei der **Firma Hufschmied** ermittelt.

Bearbeitung	Werkzeug Fa. Hufschmied	dm [mm]	z	n [1/min]	vf [mm/min]	vc [m/min]
Schruppen	HHF746100-300-GLX	10	6	1270	2250	40
Schruppen	HC645080-25015	8	5	4200	2000	106
Planfräsen	HC645080-25015	8	5	3225	870	82
Vorschlichten	HC632040-160	4	2	8000	800	101
Schlichten	HC632040-160	4	2	8000	800	101
Hohlkehlen	HC632040-160	4	2	9500	670	120
Restschruppen	HC644060-11002	6	4	5300	1100	100
Schlichten 5 Achs	HC644060-11002	6	4	3180	670	60
Planfräsen Seite	HC644060-11002	6	4	4300	900	82
Restschruppen Kreuz	HC643MUT020-060	2	3	16000	1900	101
Nutfräsen Kreuz	HC633MUT012-060	1,2	3	23000	1200	87
Schlichten Kreuz	HC633MUT012-060	1,2	3	23000	1200	87
Schlichten Wand	HC643MUT010-050	1	3	24000	1580	76
Schlichten Boden	HC643MUT010-050	1	3	24000	1580	76

ae [mm]	ap [mm]	fz [mm]	Kühlung	Fräsrichtung
[IIIIII]	[iiiiii]	[IIIIII]	Kulliulig	riusriciituiig
6,000	0,200	0,30	Luft	Gleichlauf
0,210	7,000	0,10	Luft	Gleichlauf
4,000	0,100	0,05	Luft	Gleichlauf
0,220	0,220	0,05	Luft	Gleichlauf
0,170	0,170	0,05	Luft	Gleichlauf
0,100	0,100	0,04	Luft	Gleichlauf
1,600	0,080	0,05	Luft	Gleichlauf
0,250	2,000	0,05	Luft	Gleichlauf
0,700	0,700	0,05	Luft	Gleichlauf
1,000	0,045	0,04	Luft	Gleichlauf
1,200	0,030	0,02	Luft	Gleichlauf
0,050	0,030	0,02	Luft	Gleichlauf
0,050	0,030	0,02	Luft	Gleichlauf
0,200	0,030	0,02	Luft	Gleichlauf

Legende:

dm Durchmesserz Anzahl d. Zähnen Spindeldrehzahl

vf Vorschubgeschwindigkeit vc Schnittgeschwindigkeit

vc Schnittgeschwind ae Schnittbreite

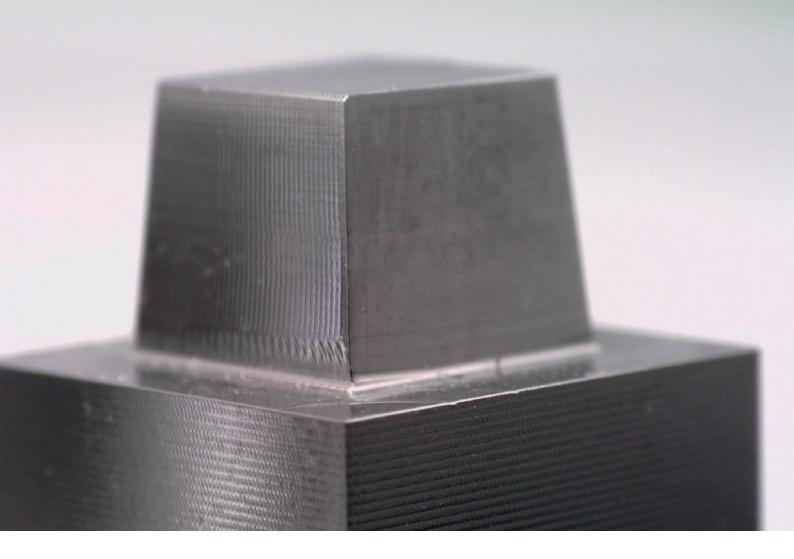
ap Schnitttiefe

fz Vorschub pro Zahn

Fräsmaschine: Grob G350

ZERSPANUNGSTEST MIT BÖHLER K888 MATRIX

Ergebnis und Zitat: Firma Hufschmied Zerspanungssysteme GmbH 86399 Bobingen


HUFSCHMIED

- » Material ist trotz der hohen Härte von 63 HRC gut zerspanbar
- » Sehr gute Oberflächen sind erreichbar.

Gemessene Oberflächengüten:

Planflächen Ra <0,15µm Konturflächen Ra <0,35µm

» Getestete Werkzeuge erreichen gute Standzeiten und sind nach drei gefrästen Bauteilen noch nicht am Standzeitende

Werkzeug	Standzeit bei Testende	Bemerkung
HHF746100-300	140 min	Werkzeug hat noch Reserven.
HC645080-25015	150 min	Gleichmäßiger Verschleiß, gefräste Planflächen nach wie vor mit Top-Rauheit (Ra<0,15 μ)
HC632040-160	240 min	Gleichmäßiger Verschleiß, gefräste Flächen noch gut
HC644060-11002	25 min	Gleichmäßiger Verschleiß, gefräste Flächen noch gut
HC643MUT020-060	30 min	Gleichmäßiger Verschleiß, gefräste Flächen noch gut
HC633MUT012-060	70 min	Gleichmäßiger Verschleiß, gefräste Flächen noch gut
HC643MUT010-050	45 min	Gleichmäßiger Verschleiß, gefräste Flächen noch gut

Die Angaben in diesem Prospekt sind unverbindlich und gelten als nicht zugesagt; sie dienen vielmehr nur der allgemeinen Information. Diese Angaben sind nur dann verbindlich, wenn sie in einem mit uns abgeschlossenen Vertrag ausdrücklich zur Bedingung gemacht werden. Messdaten sind Laborwerte und können von Praxisanalysen abweichen.

voestalpine BÖHLER Edelstahl GmbH & Co KG

Mariazeller Straße 25 8605 Kapfenberg, Austria T. +43/50304/20-6046 F. +43/50304/60-7563 E. info@bohler-edelstahl.at www.voestalpine.com/bohler-edelstahl

